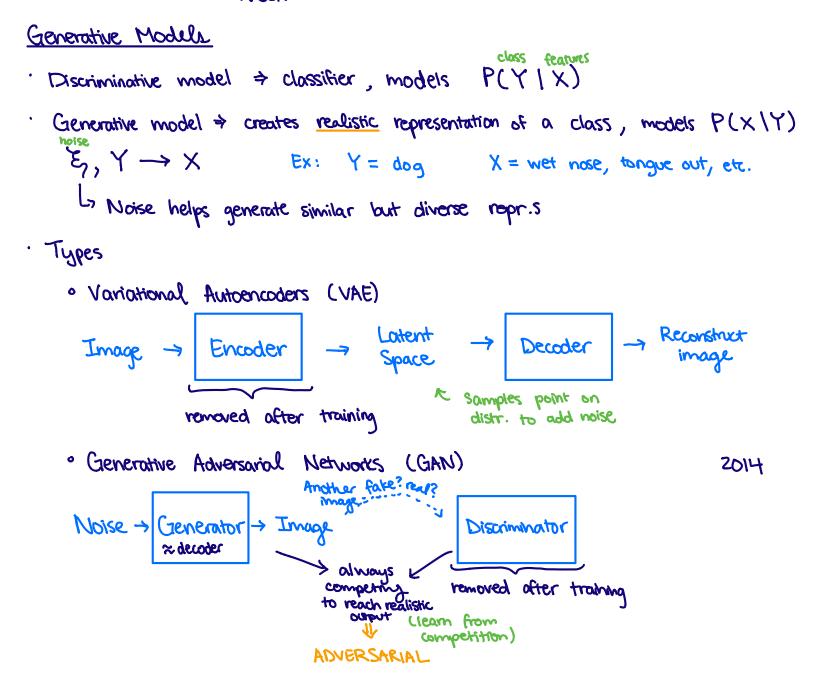
Catherine Yeo

WEEK 1: INTRO TO GANS



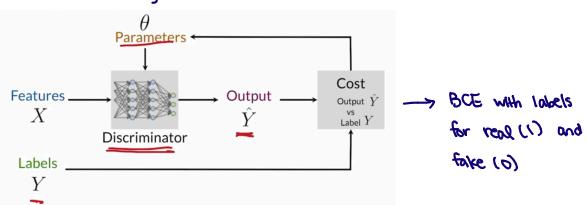
Inside GANS

· Generator learns to make fakes look real > fool discriminator

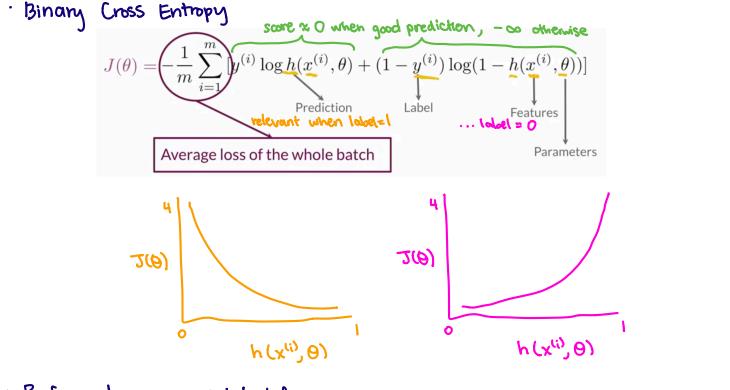
- · Generates examples of class
- Input ⇒ hoise vector to make outputs different
- " Generator wants Y to be I (real), discriminator wants Y to be D
- " Once done competiting, freeze & pavame and save generator

· Discriminator learns to distinguish real from fake

° Classifier (likely neurol net)

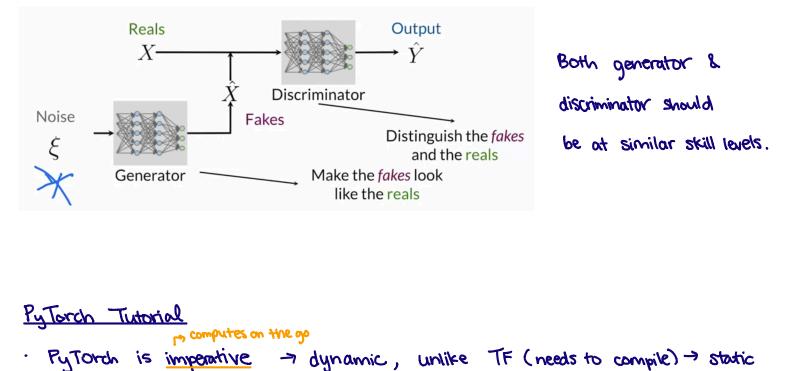


BCE cost Function



· Performed over mini-batch

· Generator wants to maximize cost \iff Disorimization wants to minimize cost minimax



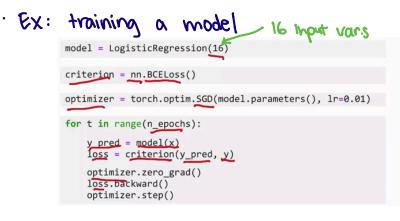
- · Static → TF takes less time
- · TF 2.0 moving towards Pytorch

import torch
from torch import nn_

class LogisticRegression(nn.Module): def __Init__(self, in): super().__init__() self.log_reg = nn.Sequential(nn.Linear(in, 1), nn.Sigmoid() def forward(self, x): return self.log_reg(x) Custom layers for DL
Define the model as a class
Initialization method with parameter

efinition of the architecture

Forward computation of the model with inputs x



Initialization of the model

Cost functio

Optimizer

Training loop for number o epochs

Optimization step

WEEK 2: DEEP CONVOLUTIONAL GANS

Activations

•

Used for classification ble layers

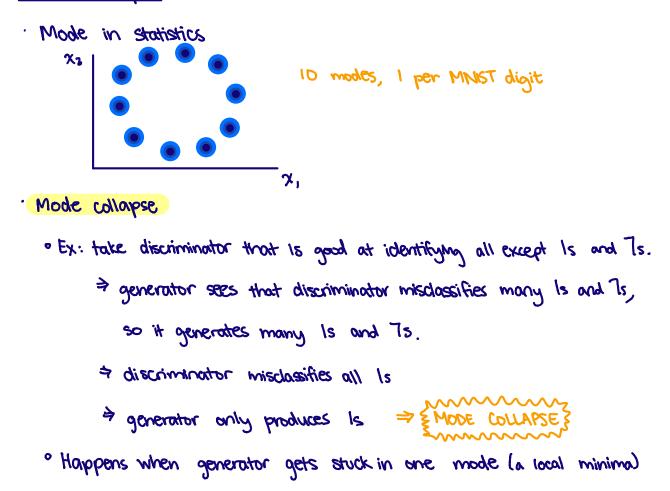
$$Z_{i}^{[L]} = \sum_{i=0}^{T} W_{i}^{[L]} A_{i}^{[L-i]} + b$$

 $Q_{i}^{[l]} = g^{[l]}(Z_{i}^{[L]})$
actuation function \Rightarrow must be { differentiable (for backprop)
actuation function \Rightarrow must be { non-linear (for layers)

- Common functions
 - ReLU
 Sigmoid → vanishing gradient problem
 Co, 1]
 Sigmoid → vanishing gradient problem
 C-1, 1]
 C-1,

WEEK 3: WASSERSTEIN GANS WITH GRADIENT PENALTY > This week: prodems faced by GANs trained with BCE loss

Mode Collapse



Problems with BCE Loss

GAN's trained with BCE loss are prove to vanishing gradient problems
GAN's want generated 8 real distributions to look similar
f()
Gen. Real
J
Gen. Real
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J</

Earth Mover's Distance (EMD)

- · EMD = amount of effort to make generated distr. equal to real distr. Ly function of distance & amount
- · Analogy: distr. 1 = dirt. How hard to move & mold dirt into real distr.?
- · Chadient for from O when distributions are very different

Wassenstein Loss (W-Loss)

· BCE loss simplified:

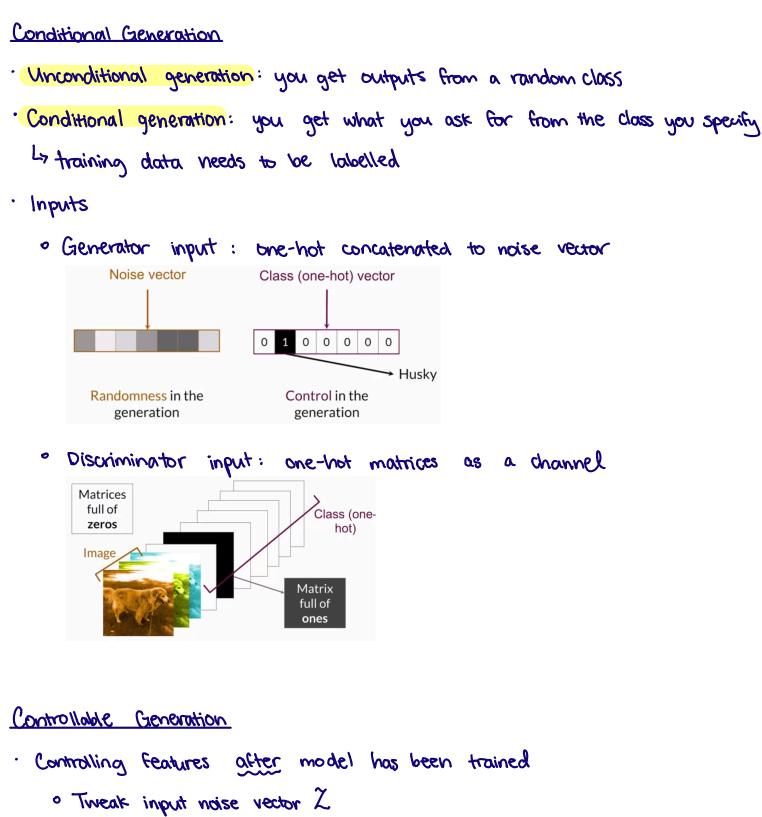
· W-Loss approximates EMD , c= aritic (w-Loss's version of disor.) Min max E(c(x)) - E(c(g(z))) d g discr. (gen. real fake

· Doesn't have to have sigmoid layer blc no longer capped ble 0 and 1

· Condition on W-Loss: critic needs to be I-Lipschitz continuous (I-L cont.) $\| \nabla f(x) \|_{Z} \leq | \rightarrow \text{norm of gradient} \leq | \text{ at every point}$

How to enforce 1-L continuity:
 Weight clipping : forces weights of critic to a fixed interval
 L7 limits critic's learning albility
 Gradiant penalty: add λreg (regulariz. term) to W-Loss
 L9 penaltizes critic when gradient norm > 1

. Ta-da ~ $\max_{c} E(c(x)) - E(c(g(z)) + \lambda E(1|\nabla c(x)||_{2} - 1)^{2}$ min g



innear initial noise vector r		
	Controllable	Conditional
	Examples with the features that you want	Examples from the classes you want
	Training dataset doesn't need to be labeled	Training dataset needs to be labeled
	Manipulate the z vector input	Append a class vector to the input

<u>Vector Algebra in Z-Space</u>

- · Interpolation using Z-space $Z_2 \xrightarrow{V_1 \begin{bmatrix} 4\\ 10 \end{bmatrix}}$ $V_1 \begin{bmatrix} 4\\ 10 \end{bmatrix}$ $V_2 \begin{bmatrix} 2\\ 1 \end{bmatrix}$ $V_2 \begin{bmatrix} 2\\ 1 \end{bmatrix}$ $V_2 \begin{bmatrix} 2\\ 1 \end{bmatrix}$ $V_2 \begin{bmatrix} 2\\ 1 \end{bmatrix}$
- Move in Z-space to modify features by finding vector directions. z_2 d d $g(v_1) \rightarrow 0$ $g(v_1+d) \rightarrow 0$
 - ° Finding that direction using classifier gradients
 - · Only update noise vector

<u>Challenges</u>

- Feature conrelation ⇒ may lead to too many (conrelated) features modified
 Z-space entranglement ⇒ not possible to control single output features
 Happens when z doesn't have enough dimensions, so
 Z-values don't correspond to clear mappings on imager
- · Disentanglement
 - If disentangled, every z element corresponds to a feature
 4 Latent factors of variation
 - " Changes to I feature do not affect others
 - Methods
 - Add labels to data
 - Use a reg. term